Multivariate Escher Transformed Laplace Distribution and Its Generalization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Esscher-transformed Laplace distribution revisited

We show that the family of Esscher-transformed Laplace distributions is a subclass of asymmetric Laplace laws. AMS 2000 classification: primary 60E05; secondary 62P05

متن کامل

Application of Esscher Transformed Laplace Distribution in Web Server Data

AbstrAct: In this article, we introduce an alternative distribution , namely Esscher transformed Laplace distribution good enough to model the file size distribution of Web servers. It exhibits asymmetry, peakedness and tail heaviness, which are common features of file size data. Esscher transformed Laplace distribution belongs to one parameter regular exponential family. We derive their repres...

متن کامل

Multivariate Generalization of the Gauss Hypergeometric Distribution

The Gauss hypergeometric distribution with the density proportional to xα−1 (1− x)β−1 (1 + ξx)−γ , 0 < x < 1 arises in connection with the priori distribution of the parameter ρ (0 < ρ < 1) representing traffic intensity in a M/M/1 queue system. In this article, we define and study a multivariate generalization of this distribution and derive some of its properties like marginal densities, join...

متن کامل

The Normal-Laplace Distribution and its Relatives

The normal-Laplace (NL) distribution results from convolving independent normally distributed and Laplace distributed components. It is the distribution of the stopped state of a Brownian motion with normally distributed starting value if the stopping hazard rate is constant. Properties of the NL distribution discussed in the article include its shape and tail behaviour (fatter than the normal)...

متن کامل

Multivariate generalized Laplace distribution and related random fields

Multivariate Laplace distribution is an important stochastic model that accounts for asymmetry and heavier than Gaussian tails, while still ensuring the existence of the second moments. A Lévy process based on this multivariate infinitely divisible distribution is known as Laplace motion, and its marginal distributions are multivariate generalized Laplace laws. We review their basic properties ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Theory and Applications

سال: 2020

ISSN: 2214-1766

DOI: 10.2991/jsta.d.200508.001